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The Euler and Navier-Stokes equations

∂tuNS + uNS · ∇uNS +∇pNS = ν∆uNS

∇ · uNS = 0, γuNS = 0

∂tuE + uE · ∇uE +∇pE = 0

∇ · uE = 0, uE · n = 0

• (x , y) = (x1, . . . , xd−1, y) ∈ Ω ⊂ Rd is smooth (d = 2,3)
• (u,w) = (u1, . . . ,ud−1,w) the velocity, p the pressure
• γ is the trace onto ∂Ω

• n is the outward unit normal to Ω

• ν is the kinematic viscosity
• Q: does uNS → uE as ν → 0 ? in what space ? rates ?
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A few results on the inviscid limit
In the absence of boundaries (Ω = Rd or Ω = Rd )

• inviscid limit holds in L2: Kato (’72), Swann (’71)
• rates of convergence which are optimal O(

√
ν), and attained for

smooth vortex patch initial data: Constantin and Wu (’95)
In the presence of boundaries (and Dirichelt B.C.)

• Kato (’84) shows that if

lim
ν→0

ν

∫
d(y,∂Ω)<ν

‖∇uNS‖2
L2dy = 0

then the inviscid limit holds (in L2)
• improved by Temam and Wang (’98), to only require the

tangential part of the velocity gradient
• inviscid limit holds if −ν∆ is replaced by anisotropic viscosity
ν1∂yy − ν2∂xx , with ν1/ν2 → 0: Masmoudi (’98)

Further works by: Bardos, Beirao da Veiga, Crispo, Lopes Filho,
Mazzucato, Nussenzveig Lopes, Taylor, Kelliher, etc.....
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Asymptotic Expansions in the inviscid limit
• Prandtl (1904) lays foundations of boundary layer theory
• in the boundary layer (BL) the inertial and viscous forces should

be comparable
• in the BL,γu (the tangential component of the velocity), has to

jump from 0 (as prescribed by Navier-Stokes), to γuE (as
prescribed by Euler)

• in the BL, the viscous term ν∂yy u should be O(1), so that the
thickness of the BL should be ε =

√
ν

• hence, for ν � 1, it is natural to consider the asymptotic
expansion

uNS = uNS,0 + εuNS,1 + ε2uNS,2 + . . .

where as before ε =
√
ν

• the idea is that uNS,0 is approximatively uE outside of the BL
• inside the BL: let Y = y/ε, so that ∂y w = ∂Y w/ε; hence w is O(ε)

• hence, for the solution inside the BL, Prandtl makes the ansatz:

uNS,0(x , y) = (uP(x ,Y ), εwP(x ,Y ))
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The Prandtl boundary layer equations
• Plug in the velocity (u(x , y/ε), εw(x , y/ε)) in the Navier-Stokes

equations and formally send ε to 0.
• To avoid issues due to the curvature of the boundary, let

Ω = H = {(x ,Y ) ∈ Rd : Y > 0} be the upper half-plane/space.
• In the limit we obtain the Prandtl boundary layer equations:

∂tuP − ∂YY uP + uP · ∇xuP + wP∂Y uP +∇xpP = 0

∂Y pP = 0

∇x · uP + ∂Y wP = 0

• Boundary conditions

lim
Y→∞

uP = γuE

lim
Y→∞

pP = γpE

γuP = γwP = 0

• study the IVP: uP(x ,Y ,0) = uP
0 (x ,Y )
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Mathematical issues for the Prandtl equations
Well-posedness in suitable functional spaces:

• Monotonic data in y : Oleinik (’66)
• Analytic data: Caflisch and Sammartino (’98 - Part I) – requires

analyticity w.r.t. both x and y ; improved by Cannone, Lombardo,
and Sammartino (’03) to require analyticity w.r.t. only x

• Weak solutions for pressure of fixed sign: Xin and Zhang (’04)
Ill-posedness and blow-up:

• Sobolev data ill-posedness: Grenier (’00), Gerard-Varet and
Dormy (’09)

• Sobolev data blow-up in W 1,∞
Y : E and Engquist (’97)

Justify the formal derivation of the Prandtl equations in the inviscid
limit, i.e. prove that

uNS = uE (1− χBL) + uPχBL +O(ε)

• Sammartino and Caflisch (’98 - Part II)
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Our motivation

• remove the need for exponential matching at the top of the BL
• indeed, there is no physical justification for exponential matching

(mathematical artifact?)
• in fact, the quantity that measures the effect of the flow inside of

the BL on the underlying Euler flow outside of the BL is the
so-called displacement thickness cf. Batchelor (99’), which is
defined as

δ1(x) =

∫ ∞
0

(
1− uP(x ,Y )

U(x)

)
dY .

• it seems that any integrable algebraic matching is sufficient to at
least define the displacement thickness
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Re-write the Prandtl equations

• For notational convenience, let U = γuE

• Homogenize B.C. at Y =∞, and get rid of pressure, by using

∂tU + U∂xU + γ∂xpE = 0,

and the variable change

v = up − U

• The Prandtl evolution for the prognostic variable become

(∂t − ∂YY + Y∂xU∂Y ) v + v∂xv − ∂Y v
∫ Y

0
∂xv + U∂xv + v∂xU = 0
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A dynamic change of coordinates

• For simplicity of exposition set d = 2. Recall: γuE (x , t) = U(x , t).
• Define A(x , t) to be the unique real-analytic solution of the IVP

∂tA(x , t) + U(x , t)∂xA(x , t) = A(x , t)∂xU(x , t)
A(x , t)|t=0 = 1

on R× [0,T ], for some T > 0.
• For θ > 1, let Φ(y) =

∫ y
0 φ(ζ)dζ, where

φ(y) = 〈y〉−θ = (1 + y2)−θ/2

• Change of variables: the ”new” vertical variable y and velocity v

y = Y A(x , t)

v(x , y , t) = uP(x ,Y , t)− (1− φ(y))U(x , t)
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The dynamically reformulated Prandtl equations

• Under this change of variables, the Prandtl system reads

∂tv − A2∂yy v + N(v) + L(v) = F
N(v) = v∂xv − ∂xW (v)∂y v + ∂xaW (v)∂y v

W (v)(x , y) =

∫ y

0
v(x , ζ) dζ

L(v) = ∂xW (v)∂yφU + ∂xv(1− φ)U + ∂y v (Φ∂xU − ∂xaΦU)

−W (v)∂xa∂yφU + v(1− φ)∂xU

F = (φ(1− φ) + Φ∂yφ) U∂xU − ∂xa∂yφΦU2 − A2∂yyφU − φ∂xP

• The system is supplemented with the boundary conditions

v(x , y , t)|y=0 = u(x ,Y , t)|Y =0 − (1− φ(0))U(x , t)= 0
lim

y→∞
v(x , y , t) = lim

Y→∞
u(x ,Y , t)− U(x , t)= 0

for all (x , t) ∈ R× [0,∞)
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Functional Setting

• Consider the y -weight given by

ρ(y) = 〈y〉α

for some α > 0 to be fixed later.
• We define a norm for the set of functions which are real-analytic

in x and decay in y by

‖v‖2
Xτ

=
∑
m≥0

‖ρ(y)∂m
x v(x , y , t)‖2

L2(H)τ
2m(t)M2

m,

where τ > 0 is the analyticity radius, and we denote the analytic
weights

Mm =
(m + 1)r

m!

for r > 0, a Sobolev exponent.
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The Main Theorem

Theorem (Kukavica and V. (’11))
Fix real numbers α > 1/2, θ > α + 1/2, and r > 1.
Assume that the initial data for the underlying Euler flow is uniformly
real analytic.
There exists τ0 > 0 such that for all v0 ∈ Xτ0 there exits T∗ > 0 such
that the initial value problem associated to the Prandtl boundary layer
equations has a unique real-analytic solution on [0,T∗].

• Solutions may be constructed even if the initial datum v0 decays
only as 〈y〉−1−ε for arbitrary ε > 0.

• This improves on the previous works, which require exponential
matching at Y =∞.
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Setup of the proof

• By the definition ‖v‖Xτ
, we have formally have

1
2

d
dt
‖v‖2

Xτ
+ (−τ̇)‖v‖2

Yτ
=
∑
m≥0

(
1
2

d
dt
‖ρv‖2

Ḣm
x

)
τ2mM2

m,

where we denoted

‖v‖2
Yτ

=
∑
m≥1

‖ρv‖2
Ḣm

x
τ2m−1mM2

m.

• The heart of the matter consists of estimating the term on the
right side of the above equality, via Sobolev energy estimates.

• After applying ∂m
x to the Prandtl equations, multiplying by ρ2∂m

x v ,
and integrating, we get

1
2

d
dt
‖ρ∂m

x v‖2
L2 − 〈∂m

x (A2∂yy v), ρ2∂m
x v〉 = 〈ρ∂m

x (F − N(v)− L(v)), ρ∂m
x v〉.
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Closing the a priori estimates

• combining all previous estimates, we have

d
dt
‖v‖2

Xτ
+ ‖Aρ∂Y v‖2

Xτ

≤ C(1 + τ−2)‖v‖2
Xτ

+ Cτ−1‖Aρ∂Y v‖Xτ
‖v‖2

Xτ
+ C‖v‖Xτ

+
(
τ̇ + C + C∗τ−1‖Aρ∂Y v‖Xτ

)
‖v‖2

Yτ

for some positive constant C.
• choose τ to solve the ODE

d
dt

(τ2) + 4Cτ0 + 4C‖Aρ∂Y v‖Xτ
= 0

with initial condition τ0

• as long as τ > 0 this implies that

τ̇ + 2C + 2Cτ−1‖v‖Zτ
≤ 0
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